Singular vector distribution of sample covariance matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Methods for Handling Singular Sample Covariance Matrices

The estimation of a covariance matrix from an insufficient amount of data is one of the most common problems in fields as diverse as multivariate statistics, wireless communications, signal processing, biology, learning theory and finance. In a joint work of Marzetta, Tucci and Simon, a new approach to handle singular covariance matrices was suggested. The main idea was to use dimensionality re...

متن کامل

Eigenvalue Distribution of Large Sample Covariance Matrices of Linear Processes

We derive the distribution of the eigenvalues of a large sample covariance matrix when the data is dependent in time. More precisely, the dependence for each variable i = 1, . . . , p is modelled as a linear process (Xi,t)t=1,...,n = ( ∑∞ j=0 cjZi,t−j)t=1,...,n, where {Zi,t} are assumed to be independent random variables with finite fourth moments. If the sample size n and the number of variabl...

متن کامل

Spectral Density of Sparse Sample Covariance Matrices

Applying the replica method of statistical mechanics, we evaluate the eigenvalue density of the large random matrix (sample covariance matrix) of the form J = ATA, where A is an M × N real sparse random matrix. The difference from a dense random matrix is the most significant in the tail region of the spectrum. We compare the results of several approximation schemes, focusing on the behavior in...

متن کامل

A Clt for Regularized Sample Covariance Matrices

We consider the spectral properties of a class of regularized estimators of (large) empirical covariance matrices corresponding to stationary (but not necessarily Gaussian) sequences, obtained by banding. We prove a law of large numbers (similar to that proved in the Gaussian case by Bickel and Levina), which implies that the spectrum of a banded empirical covariance matrix is an efficient esti...

متن کامل

Gaussian fluctuations in complex sample covariance matrices

Let X = (Xi,j)m×n,m ≥ n, be a complex Gaussian random matrix with mean zero and variance 1 n , let S = XX be a sample covariance matrix. In this paper we are mainly interested in the limiting behavior of eigenvalues when m n → γ ≥ 1 as n → ∞. Under certain conditions on k, we prove the central limit theorem holds true for the k-th largest eigenvalues λ(k) as k tends to infinity as n → ∞. The pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2019

ISSN: 0001-8678,1475-6064

DOI: 10.1017/apr.2019.10